Radiation Pressure in Massive Star Formation
نویسندگان
چکیده
Stars with masses of ∼ 20 M⊙ have short Kelvin times that enable them to reach the main sequence while still accreting from their natal clouds. The resulting nuclear burning produces a huge luminosity and a correspondingly large radiation pressure force on dust grains in the accreting gas. This effect may limit the upper mass of stars that can form by accretion. Indeed, simulations and analytic calculations to date have been unable to resolve the mystery of how stars of 50 M⊙ and up form. We present two new ideas to solve the radiation pressure problem. First, we use three-dimensional radiation hydrodynamic adaptive mesh refinement simulations to study the collapse of massive cores. We find that in three dimensions a configuration in which radiation holds up an infalling envelope is Rayleigh-Taylor unstable, leading radiation driven bubbles to collapse and accretion to continue. We also present Monte Carlo radiative transfer calculations showing that the cavities created by protostellar winds provides a valve that allow radiation to escape the accreting envelope, further reducing the ability of radiation pressure to inhibit accretion.
منابع مشابه
High Mass Star Formation by Gravitational Collapse of Massive Cores
The current generation of millimeter interferometers have revealed a population of compact (r ∼< 0.1 pc), massive (M ∼ 100 M⊙) gas cores that are the likely progenitors of massive stars. I review models for the evolution of these objects from the observed massive core phase through collapse and into massive star formation, with particular attention to the least wellunderstood aspects of the pro...
متن کاملHow Protostellar Outflows Help Massive Stars Form
We consider the effects of an outflow on radiation escaping from the infalling envelope around a massive protostar. Using numerical radiative transfer calculations, we show that outflows with properties comparable to those observed around massive stars lead to significant anisotropy in the stellar radiation field, which greatly reduces the radiation pressure experienced by gas in the infalling ...
متن کاملThe Disruption of Giant Molecular Clouds by Radiation Pressure & the Efficiency of Star Formation in Galaxies
Star formation is slow, in the sense that the gas consumption time is much longer than the dynamical time. It is also inefficient; essentially all star formation in local galaxies takes place in giant molecular clouds (GMCs), but the fraction of a GMC converted to stars is very small, ∼ 5%. While there is some disagreement over the lifespan of GMCs, there is a consensus that it is no more than ...
متن کاملFormation of globular clusters induced by external ultraviolet radiation
We present a novel scenario for globular cluster (GC) formation, where the ultraviolet (UV) background radiation effectively works so as to produce compact star clusters. Recent observations on the age distributions of GCs indicate that many GCs formed even after the cosmic reionization epoch. This implies that a significant fraction of GCs formed in UV background radiation fields. Also, the st...
متن کاملThe formation of massive star systems by accretion.
Massive stars produce so much light that the radiation pressure they exert on the gas and dust around them is stronger than their gravitational attraction, a condition that has long been expected to prevent them from growing by accretion. We present three-dimensional radiation-hydrodynamic simulations of the collapse of a massive prestellar core and find that radiation pressure does not halt ac...
متن کاملThe Formation of Massive Binary Stars
The formation of massive stars in close binary systems is complicated due to their high radiation pressure, the crowded environment and the expected minimum separation for fragmentation being many times greater than the orbital separation. I discuss how massive star formation can be understood as being due to competitive accretion in stellar clusters. Massive binary systems are then formed due ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005